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Jets induced by oscillatory motion 
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(Received 17 September 1971) 

The flow induced by a cylinder performing transverse periodic oscillations in 
a fluid which is otherwise at rest is investigated. The motion of the cylinder is 
not necessarily harmonic. Attention is focused upon the induced steady stream- 
ing. In  particular, the jet-like flow which arises when the streaming Reynolds 
number is large is studied. The theoretical results obtained are applied to a cIass 
of elliptic cylinders, and a simple experimental investigation is carried out which 
substantiates the main theoretical conclusions. 

1. Introduction 
In  this paper we are concerned with the flow induced by a cylinder which 

performs periodic transverse vibrations in a viscous fluid which is otherwise 
at rest. We suppose that the cylinder speed along its axis of oscillation is given 
by U,f(t‘), where it is convenient to define U ,  in such a way that max If(t’)[ = I.  
The speed is taken to be periodic with period 2771~  so that f ( t ’  + 2nlw) = f ( t ’ ) ,  
where t‘ represents the time. In  the theoretical development of $ 2  we find i t  
convenient to represent f ( t ’ )  as 

m 
f ( t ’ )  = 2 {a, cos wnt’ + b, sin wnt’), 

= 2 a,cos(wnt’+/3,), say. 

n=l 

I OD 

n=l 

With Urn as a typical velocity, w-l as a typical time and v the kinematic viscosity 
of the fluid, there are three length scales associated with this problem. These 
are a = U,/w, which is a measure of the amplitude of the oscillation, 6 = (v/w)&, 
which represents the thickness of the Stokes layer present at the cylinder 
surface, and a geometrical length d, which is representative of the dimensions 
of the cylinder. From these three length scales we can construct two independent 
dimensionless parameters which characterize the motion. These we choose as 

e = a/d = Urn/wd, 
R, = a2/S2 = V:/WV, 

and in our theoretical development we suppose that 8 4 1 with R, = O( I) and 
assume that our results are asymptotically valid as e -+ 0 with lim R, < GO. For 
small amplitude vibrations the choice of 6 as a perturbation parameter is an 
obvious one; the choice of R, as the second independent parameter is less obvious. 
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However, for the case of a cylinder vibrating in simple harmonic motion, Stuart 
(1963) has argued that R, is in fact the Reynolds number associated with the 
steady streaming which persists outside the Stokes layer, and this point has 
been further pursued by Riley (1967). Since R, plays the same role in the present 
investigation, the central theme of which is the induced steady streaming, it 
emerges as a natural parameter, along with E ,  to characterize the flow. 

With U,, o r 1  and d as a typical velocity, time and length respectively, the 
equation satisfied by the dimensionless stream function @ is 

where V2 is the two-dimensional Laplace operator. 

boundary conditions for (3) are 
If the co-ordinate system x = (8, y) is supposed fixed in the cylinder then the 

v = 0 on the cylinder, 

where the x axis has been chosen to be parallel to the direction of oscillation and 
the real part of any complex quantity is to be understood. All the variables in (3) 
and (4) are dimensionless. 

The fact that a steady streaming may be induced by a periodic motion of the 
cylinder is most readily appreciated from (3) by considering a single component 
of (1). Thus, to first order, if $ N cos (nt +In) then the O(E)  equations can contain 
forcing terms which contribute a steady part in addition to the expected higher 
harmonics. The method of solution of (3) for E < 1, developed in $2,  follows 
closely that given by Riley (1967) for a cylinder performing a simple harmonic 
motion andin turn reflects the work of Longuet-Higgins (1953). Complementary 
series solutions in powers of B are assumed in both an outer region, distance O( 1) 
from the cylinder, and an inner Stokes layer of thickness U(e/R!). To each order 
of E these series solutions must match asymptotically. Clearly, for those parts 
of the theory where only linear equations are involved, the results for the general 
periodic motion (1)  of the cylinder may be inferred from a suitable superposition 
of the earlier results for a purely sinusoidal motion. However, as we have demon- 
strated above, the steady streaming phenomenon is a result of interactions 
associated with the nonlinear terms in (3). Nevertheless, it can be shown that 
the principal results pertaining to the steady streaming are closely related to 
those which are obtained when the motion of the cylinder is represented by only 
a single term of (1). Thus in the outer region the streaming is governed by the 
full Navier-Stokes equation with R, as the Reynolds number. The streaming is 
driven indirectly from that within the Stokes layer which is itself a direct con- 
sequence of the action of the Reynolds stresses; these stresses, for the purely 
sinusoidal case, are not present in the outer region. 

For the case R, $- 1, but with ER$ < 1 in accordance with our assumed limit 
process,? the outer streaming itself assumes a boundary-layer character, of 

t Since in the double-limit process E 3 0, R, co, the limit E -+ 0 is carried out first. 
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thickness O(R;*). This outer boundary layer has been the subject of studies by 
Riley (1965) and Stuart (1966) for the case of a cylinder vibrating as a pure 
sinusoid. These authors conclude that, for a symmetrical body say, the outer 
boundary layers develop from stagnation points of attachment leading to an 
inevitable ‘ collison ’ at the axis of oscillation, along which the fluid then moves 
out in a jet-like manner. I n  this paper, for R, 9 1, we first show that for a cylinder 
whose velocity is described by (l), the characteristics of the motion in the outer 
boundary layer may be immediately inferred from those in the case of a cylinder 
performing purely sinusoidal oscillations. We then extend, in Q 3, the work of 
Riley and Stuart by performing a complete numerical integration of the boundary- 
layer equatrions for a class of elliptic cylinders. In  this way we are able to calculate 
the strength of the jet which emerges along trhe axis of oscillation. I n  $4 we 
describe a simple experimenC which has been performed to supplement the 
theoretical work. In the experiments the cylinder vibrates transversely in a 
tank of water. The jet, to which we have referred above, is visualized by placing 
a thin wire perpendicular to the axis of vibration and intermittently passing an 
electric current through the wire. Lines of hydrogen bubbles are released 
and clearly show the jet-like structure of the flow. From these experiments, 
quantitative measurements have been made of the momenhm flux in the jet, 
and bhe jet profiles have been compared with those predicted by Bickley (1937). 
The agreement between theory and experiment is, we believe, very encouraging. 

2. Development of the theory 
With 8 < 1 and R, = O(1) we seek a solution of (3), subject to (4), in the form 

$ = x Ern$7n(X,t,R,), 
m= 0 

where, from our discussion in Q 1, we further write 

11 = $RX, t, R,) + $i% R,) (6) 

in anticipation of the assumed steady streaming of O(B) .  Substituting (5) into 
(3), we find that 7Cr0 satisfies 

(7) 1 a(vz$o)/at = 0, 
I l r O = O  on ij= 0, 

yko N y C. anei(nt+ps) as 1x1 -+ 00, 

in which the no-slip condition, which cannot be satisfied by $o, has been 
relaxed. I n  (7), and in whatr follows, it proves convenient in the neighbourhood 
of the body to work not with co-ordinates (x, y) but with orthogonal co-ordinates 
X = (53, y”), where y” is measured normal to the body surface coinciding with y” = 0. 

00 

n=l 

The solubion of bhe problem for $o posed by (7) may be written as 

where $op(x) represents the stream function for steady, irrotational flow past 
a cylinder with uniform flow at idn i ty  aligned with the axis of oscillation y = 0. 

19 FLM 53 
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Expanding this solution for $o close to the cylinder surface y” = 0 shows that 

B. J. Davidson and N .  Riley 

where V(2)  is the surface speed for inviscid flow past the body. Since the no-slip 
condition is violated by (9) there must be an inner boundary layer, the Stokes 
layer of dimensionless thickness O ( E / R ~ )  within which the viscous terms in (3), 
hitherto neglected, become important. Accordingly we define inner boundary- 
layer variables as 

and seek a series solution, complementary to ( 5 ) ,  as 

y = Yo@, (5, t ,  a,) +ep!W, c, t ,  a,) + YP(% c, R,)) + O(@), (11) 

where the steady streaming O(E)  has been anticipated. The leading term in (I  1) 
must match with the first-order solution (8). Guided by the inner expansion of 
(8), derived from (9) and (lo), we write Yo as 

where = ni(5. I 
The solution for XO,n, which matches with the outer solution and satisfies the 
conditions on (5 = 0, is the well-known Stokes solution 

X , ,  = (Cn - $( 1 - i) [ 1 - e-(l+i)Cn]). (13) 

As stated in § 1, our prime aim is to study the steady streaming represented 
by $f) and YP). Let us return now to the outer solution of O(a). Since V2$, = 0 
we have, from (3), (5) and (6),  

from which we infer that V2$p = 0. (34) 
Equation (14) yields no information about @) and therefore does not concern 
us directly. We do not consider $?) further except to note that, exactly as in 
the case of purely sinusoidal oscillations, we may expect contributions to $?) 
which are required to match with the inner solution (12), corresponding to a dis- 
placement effect, and the inner solution of O(E),  FF). Before returning to the 
steady part of the inner solution of O(E) ,  represented by Yp), we consider for 
future reference the nature of the solution of O(a2) in the outer region. Sub- 
stituting ( 5 )  into equation (3) and equating the coefficient of the terms O(e2) to 
zero gives 
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We are now in a position to discuss in detail the steady streaming of O(E). Consider 
first the inner streaming represented by Yf). From (3), (10) and (11) we see that 
the equation satisfied by Y'P) is 

where the superscript (s) on the right-hand side indicates the mean or steady 
part of that quantity. The terms on the right-hand side of (16) in fact represent 
the Reynolds stresses acting in the Stokes layer and must be evaluated using 
(12) and (13). It is clear that the only time-independent parts on the right-hand 
side of (16) can arise from interactions between terms of the same order in (12), 
that is from terms which involve cos2 (nt  +a,) or sin2 (nt  + ,8,). Consequently, 
just as Yo is constructed by superposing solutions from the theory involving only 
a single component of (l), we can similarly construct a solution for the induced 

dV * a: 
dZ n=l n4 

streaming by writing 
Y'I"' = v- z - Xf)&%). 

The solution for XtL(&J which enables us to satisfy the boundary conditions 
Y'?) = aYp)/ag = 0 on g = 0 is given by 

(1 8) 

The outer expansion of (17), expressed in terms of the outer variables, provides 
via the matching criterion a boundary condition on y" = 0 for the outer streaming 
represented by $f). This is most conveniently expressed as a 'slip-velocity ' 
condition, say us, which the outer solution must satisfy. Thus 

Xfa = - $6 - & e-2cn - Q e-cn cos 5, - e-cn sin cn - $gvL e-cn sin b. 

from which we deduce, using (18), that 

where 
W 

z = z (a;/%). 
n=l 

For a cylinder which performs simple harmonic oscillation al = 1, a, = 0, n > 1, 
and (20) reduces to the well-known result which may be found, for example, in 
Stuart (1963). 

At this stage, although we have considered terms up to and including 0(e2) 
in the outer solution, we have no further knowledge of $1"). To derive theequation 
satisfied by 11.1") we follow the procedure adopted by Riley (1967) and consider 
the terms of O(e3) in (3), using (5). Since we know already that V2$, = V2$ih) = 0, 

and the steady part of (21) yields an equation for $9). The first term on the left- 
hand side of (21) will only contain a steady part if $r3 contains a term K t. The 
possible meaning, and consequent rejection of such a term, has been discussed 

19-2 
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by Riley (1967). The mean part of the second term on the left-hand side of (21) 
is a contribution due to the action of Reynolds stresses in the outer region. 
However from (8) and (15) it is readily seen that this term makes no contribution 
to  the time-independent part of (21). Consequently the outer steady streaming 
is driven indirectly, by the Reynolds stresses acting in the Stokes layer, via 
the slip velocity given by (20). The remaining terms in (21) are easily handled 
so that finally, for the outer region, we see that $f) satisfies the fullNavier-Stokes 
equations with R, as Reynolds number. Thus 

Apart from the constant factor Z, defined in (ZOa), the outer streaming is de- 
termined as for the case where the vibrations of the cylinder are purely sinusoidal. 
Both of the conditions on 11.1") at ij = 0 arise from the matching requirement. 

We are primarily interested in those cases for which R, > 1. In such situations 
the outer streaming itself assumes a boundary-layer character with the thickness 
of the outer boundary layer of O(R;h), or O(e-l) times thicker than the Stokes 
layer. The work of Riley (1965) and Stuart (1966) indicates that these boundary 
layers develop from the two stagnation points of attachment, at which d V/dZ = 0, 
and continue to develop, leading to an inevitable collision, which results in a thin 
jet emerging along theaxisof oscillation. Thishas beendemonstrated qualitatively 
for a circular cylinder by Schlichting (1932). 

To describe the boundary-layer flow for .R, >> 1 we choose as origin of co- 
ordinates on the boundary a stagnation point of attachment 2 = 2,, where 
(dV/dii3),8 = 0. We thus write I 6 = z-gs, 

and substitute into ( 2 2 ) .  Ignoring terms of relative order R;t and performing 
one integration with respect to 7, we have, finally, for the outer boundary layer 

together with a$f)/aV+ 0 as 7-to0, 
= 0 on 7 = 0, 

a$f)/av = = -$V'dV/d[ on 7 = 0, 

- 

a$f')/ay = o on 5 = 0. 

A novel feature of equations (24) and (25) is that, by virtue of the transformation 
(23), they are independent of the parameter E. Consequently, for these high 
streaming Reynolds number situations, the outer flow characteristics for any 
periodic motion (1) of the cylinder may be inferred directly from those for a 
cylinder performing simple harmonic motion. 
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The equation (24) together with boundary conditions (25) has been studied 
independently by Riley (1965) and Stuart (1966). Each author, using a different 
method, finally presents results for symmetric cylinders in the form of series 
about ( = 0. Naturally, since only a few terms are calculated in each case, these 
series are of limited value, particularly if one wishes to  extend the investigation 
from = 0 up to the axis of oscillation where the boundary layers collide. Con- 
sequently, a numerical finite-difference technique has been devised for solving 
(24) and (25). The technique is fully implicit and is standard for two-dimensional 
boundary-layer calculations. The nonlinearity in (24) is handled by quasi- 
linearization so that at each step in the ( direction the nonlinear algebraic 
equations resulting from discretization in the 7 direction are solved iteratively. 
When the difference ’between successive iterates falls below some prescribed 
tolerance the solution advances one further step in the 6 direction. In  this way 
it is possible to ‘march’ from 6 = 0 to the axis of oscillation. Full details of this 
method are given by Davidson (1971), who also describes a momentum integral 
method which, for cylinders which are not too ‘eccentric’, yields reliable results 
very quickly. In  the next section we discuss the results obtained from the theory 
developed here for R, 1, to which the finite-difference technique has been 
applied for a class of elliptic cylinders. 

3. Application to elliptic cylinders 
In  order to solve (24) and (25) for a particular cylinder it is first necessary to 

calculate the slip velocity V ( 2 )  at the cylinder surface in steady potential flow. 
From this one can calculate the velocity V ,  which features as a boundary condition 
on 7 = 0 in (25). We now carry out this analysis for an elliptic cylinder of semi- 
major and semi-minor axes a and b respectively. 

Consider such a cylinder in a uniform stream U, inclined at angle a to the 
major axis as in figure 1. To calculate the complex potential for the flow past 
this cylinder we first transform the z = (x + i y )  plane to the z* plane, where 

z = z*+h2/2*. (26) 

Here h2 = g(a2-b2) and the radius of the circle to which the ellipse transforms 
is p = +(a + b).  The complex potential w may now be written as 

w = U,(z* e-ia+pZeia/z*). (27) 

On the surface of the cylinder in the z* plane we have z* = p e @ ,  0 < $ < 27~ 
and consequently the inviscid slip velocity on the surface of the elliptic cylinder 
in the z plane is given by 

‘(4) = 1 1 = (sin2 9 + k2 cost (28) 
d w  U,( 1 + k) sin ($-a) 

3 

where k = b/a < 1. Furthermore, it can be shown, if the maximum diameter 2a 
is chosen as the characteristic length d ,  that at the surface of the ellipse 
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t’ 

u, 
FIGURE 1. Steady flow past an ellipse. 

where 6 is defined in (23). The origin off  is chosen to coincide with a stagnation 
point of the steady streaming, say q5 = /3, and we define a variable #1 = q5 - p. 
From (28) and (29) the slip velocity V ,  in (25 )  may now be written as 

3(1+ k)2  sin (q51 +p-- a) {( 1 - k2) cos (#1 + a +p)  - (1 + k2) cos (q51+/3- a)} 
+in2 (A  + /3) + k2 cos2 (#1 +/I))% 

v,= , 
(30) 

and the calculation of V,(<) is completed by noting that 

The calculation of E([) thus reduces to simple quadrature. We have carried out 
calculations for two special cases: (i) when the axis of oscillation coincides with 
the major axis of the cylinder (a = 0, p = in) and (ii) when it coincides with the 
minor axis (a = 4n, /3 = 0). In each case, on account of the symmetry about 
the major and minor axes, we need only consider the quadrant 0 < q51 < &n. 

In  figure 2 we show V ,  as a function of f/&, where f t  = (f)41+ is the value of 
< at the axis of oscillation, for various ellipses characterized by the parameter K.  
This quantity is defined as the ratio of the ellipse axis perpendicular to the axis 
of vibration to that parallel to the axis of vibration. Thus, when the cylinder 
oscillates parallel to its major axis K = k, and when it oscillates parallel to its 
minor axis K = E-l.  We note that when E = K = I, the case for a circular cylinder, 
V ,  = 3 sin 4E and is symmetric about </& = 0.5. Otherwise V ,  is skew-symmetric 
and we note, in particular, the sharp rise in to a relatively high value as the 
axis of oscillation is approached for small values of K .  

With V , ( E )  determined for these cylinders the boundary-layer equation (24) 
may be integrated, subject to (25 ) ,  for 0 < [ d ft by the method described by 
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0 0.5 

5& 
1 .o 

FIGURE 2.  "he ' slip velocity' for the outer boundary layer for various 
elliptic cylinders. 

Davidson (1971) and outlined briefly in $2. Velocity profiles for various values 
of 6 are shown in figure 3 for this outer boundary layer in the case of a circular 
cylinder. These show features which one may readily relate to the distribution 
of V ,  in figure 2 for K = 1. We observe in addition that as 5 + .& the boundary 
layer does not become empty, leading to the inevitable collision with the boun- 
dary layer which begins at the other attachment point. We emphasize that this 
notion of collision of boundary layers is only valid in the limit R, -+ 03 and return 
to this point in the next section. The entrainment velocity v, into the boundary 
layer is shown in figure 4 and is seen to be negative for all values of 5. This result 
has been previously postulated, using a simple argument, by Riley (1965). 

The jets which emerge along the axis of oscillation will have the property that 
the momentum flux along the jet will be invariant; this may be seen from the 
work of Bickley (1937). Clearly, then, the momentum flux in the outer boundary 
layer under discussion is an important quantity. In  figure 5 we show the 
momentum flux 
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abwar 
FIGURE 3. Velocity proHes, a t  various stations, in the outer boundary layer 

for a circular cylinder (K  = 1). 

FIGURE 4. The entrainment velocity into the outer boundary layer 
for a circular cylinder ( K  = 1). 
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0 0.5 
t x t  

1 .o 

FIGURE 5. The momentum flux in the outer boundary layer for vapiouS elliptic cylinders. 
--- , momentum flux for K = 1.0 calculated from the series solution given by Riley 
(1965). 

in the outer boundary layer &s a function of g/& for various values of K.  In  
figure 6 we show the quantity N = 2 M ( l )  as a function of K,  calculated from 
the terminal boundary-layer momentum flux. This parameter will determine 
the strength of the jet. We observe that N exhibits an unexpected minimum at 
K s 0.8. Consideration of the distribution of M(<),  and its relation to the velocity 
V ,  shown in figure 2, indicates that the relatively small increase in N for values 
of K < 0.8 may be attributed to the boost given to the boundary-layer flow 
close to the axis of oscillation for small K.  Care must be exercized in interpreting 
these results since, of course, no jet can be expected from the vibrations of a flat 
plate in its own plane, corresponding to K = 0. In  fact the theory developed 
above will only be valid for kR$ + 1 if the boundary layer is to remain thin 
compared with the thickness of the ellipse, as we have implicitly assumed. 

The relatively simple physical situation which we have studied in $5 2 and 3, 
together with the unexpected result shown in figure 6 ,  has prompted arudimentary 
experimental investigation which we now describe. 

4. Experiments 
I n  the experimental programme only limited facilities were available, and 

our primary aim has been to measure the strength of the jet along the axis of 
oscillation which results from the collision of the boundary layers. This has been 
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16.0 

12.a 

N 
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I I 

1 .o 2.0 
K 

FIGURE 6.  The contribution to the terminal momentum flux from both boundary layers as a 
function of K.  0 ,  mean for the experimental results included here. The error bars represent 
the standard deviation of the mean. The numbers of readings used for each cylinder are aa 
followsi 9 for K = 0.57, 6 for K = 0.75, 7 for K = 1.0, 10 for K = 1.33 and 4 for K = 1-75. 

accomplished by a simple flow visualization technique shown schematically in 
figure 7. The vibrating cylinder was submerged in a tank of water and oscillated 
vertically. Across the jet a thin wire was placed, and through this wire a pulsating 
current was passed to release lines of hydrogen bubbles. These lines of bubbles 
rise from the wire and are distorted to show the jet structure quite clearly. 
Quantitative measurements are made from photographic records. 

In  the theory described in 4s 2 and 3 the outer boundary-layer calculations 
were continued up to the axis of oscillation 5 = &. Of course, the boundary-layer 
equations break down before that point is reached, in fact within a distance of 
O(R;t) from &. In  a region centred upon the point 0 of the cylinder in figure 7, 
which coincides with the axis of oscillation, and of typical dimension O(R;g), the 
flow is effectively inviscid. During an early sequence of experiments to establish 
qualitatively the presence of the jet, dye was injected into the boundary layer 
at various points around the cylinder. It is interesting to note that there was 
no ‘trapping’ of the dye in this inviscid region indicating that no closed stream- 
lines are present. It is within this region that the flow changes direction and 
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FIGURE 7. Schematic representation of the jet and flow visualization technique. 

from which it emerges as the jet shown in figure 7. Similar situations have been 
encountered by Stewartson (1958) and Lyne (1971), in different physical con- 
texts. Both these authors conclude that the velocity profiles at  the end of each 
boundary layer are convected around and emerge essentially unchanged on this 
scale. We assume this to be the case here so that, in particular, the momentum 
flux in the jet is proportional to N = 2 M (  l), where M is defined in equation (32). 

The similarity solution for the two-dimensional jet given by Bickley (1937) 
may be described as follows. If is the dimensional stream function for the 
jet then with ( X ,  Y )  as dimensional co-ordinates, with origin at the mean position 
of 0 in figure 7, 

where i j  = ( N 1 / 4 8 p 2 ~ 2 ( X - X 0 ) 2 ) Q  Y ,  

so that the dimeiisional axial velocity 6, along the jet is given by 

(33) I $9) = (ONlv(X-X,)/2p)*tanhij, 

Cs = (3Nf/32p2v(X - X,))* sech2 i j .  (34)  

In  equations ( 3 3 )  and ( 3 4 )  
--m 

is the momentum flux per unit depth in the jet, and X ,  is an arbitrary constant 
which simply reflects the uncertainty of the location of the origin for the similarity 
solution. Prom the manner in which our jet is formed it is clear that the initial 
velocity profile will not correspond to (34). However, our experimental results 
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Relay circuit 

Coil -300 turns 
42 s.w.g. copper wire 

permanent magnet 

FIGURE 8. Schematic representation of the experiment. 

indicate that the similar profiles are achieved within about one diameter from 
the point at  which the jet emerges. We now describe our experimental procedure 
in greater detail. 

The experimental set-up is shown schematically in figure 8. The cylinders, 
typically 30cm in length and 2cm in diameter, were submerged in water to 
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which a small quantity of salt ( z 0.1 g/l) was added in a tank of cross-section 
28 x 26 cm and length 58 cm. The vertical oscillations of the cylinder were in- 
duced mechanically by a vibrator which was activated electromagnetically. The 
amplitude and frequency of the vibrations could be varied over a fairly wide 
range. On the brass shaft connecting the cylinder and vibrator we incorporated 
a coil of approximately 300 turns of 42s.w.g. copper wire. This was placed 
between the pole pieces of a permanent magnet and the induced e.m.f. in this 
coil, which is proportional to the velocity, was monitored on an oscilloscope. 
A typical trace is shown in figure 9 (a)  (plate 1). In  this way, from our knowledge 
of the amplitude of the oscillation, which was measured using a travelling micro- 
scope, we were able to calculate the velocity of the vibrating cylinder. In all 
cases the motion of the cylinder was a distorted simple harmonic motion to which 
we can apply the theory of $2 .  As we have already mentioned, the flow was 
visualized by releasing hydrogen bubbles into the fluid over the cylinder. This 
was achieved by stretching a length of 2 amp tinned copper fuse wire horizontally 
over the cylinder and perpendicular to its generators. A potential difference 
was applied between this wire and a copper rod electrode immersed in the liquid. 
The voltage provided was obtained from a variable d.c. source and the supply 
was pulsed using a simple relay circuit, shown in detail in figure 8, in connexion 
with a low frequency generator. The frequency of the pulse and the applied 
potential difference were varied until a well-defined succession of velocity pro- 
files was observed. Strong side lighting along the wire showed, by scattered light, 
the hydrogen bubbles very clearly against a dark background. These were 
photographed on Ilford FP 4 film using an exposure of & s. 

In  the experiments lines of hydrogen bubbles were released at fixed, pre- 
determined intervals from the wire. These lines rise freely but are distorted by 
any fluid motion which exists and the jet structure can be clearly visualized, 
as for example in figure 9 ( b )  (plate 1). From such photographs quantitative 
measurements may be made. The relationship between the measured momentum 
flux Nl in the jet and the parameter N of figure 6 can be shown to be 

Quite apart from the fact that it was not easy to create an approximately two- 
dimensional symmetric flow, experimental difficulties associated with the flow 
visualization technique were encountered. Too large a current passing through 
the wire created an apparently continuous stream of large bubbles from the 
wire. Even for moderately large currents the striations in the fluid represented 
by the lines of bubbles become distorted by an instability caused by the local 
aggregation of bubbles. In  the experiments currents M 30ma at M 15V d.c. were 
used, but even then the formation of a relatively large stationary bubble at the 
wire was always a potential hazard. The current was pulsed through the wire at 
frequencies in the range 3-6c/s. The optimum position of the wire relative t o  
the cylinder, and the amplitude and frequency of the cylinder vibration were 
found by trial and error. Typically, with the wire about one diameter from the 
cylinder, and with an amplitude and frequency 0.1 cm and 45 c/s respectively, 



302 B. J .  Davidson and N .  Riley 

-3-0 -2.0 -1.0 0 1 .o 2.0 3.0 
iOY/d 

FIGURE 10. A comparison between the theoretical jet solution due to Bickley (1937) and 
typical experimental profiles over a circular cylinder. For N7. = 0.35 g/sz : - ,theory; 0, 
experiment. For N ,  = 0-61 g/s2: ---, theory; a, experiment. 

the best results were obtained, with measured velocities in the fluid of the 
order 1 cm/s. Thus in the experiments E M 0*05,B, M 300. The experiments were 
carried out using five cylinders corresponding to K = 0.57, 0.75, 1-00, 1.33 and 
1.75. The elliptic cylinders were fashioned from balsa wood and suitably sealed. 
The results from the measured momentum flux are compared, using (35), with 
the theoretical prediction in figure 6. Correlation of experimental results with the 
theory involves U:, as may be seen from (35). Thus any error in the measurement 
of the amplitude of the vibration is raised to the third power. This measure- 
ment, along with the interpretation of the photographic records, proved to be 
the weakest point in our experimental investigation and is up to 5 % in error. 
For each cylinder a large number of photographs of the jet profiles were analysed 
and the results from this analysis are shown in figure 6. Greater difficulty was 
experienced in obtaining results for the slender ellipses although the relatively 
strong, very thin jet predicted theoretically was clearly visible to the eye. In  
figure 10 a comparison is made between the theoretical velocity profile (34) and 
two profiles which are representative of those obtained experimentally using the 
circular cylinder. The parameter X ,  was chosen by matching the maximum 
velocity predicted by (34) with the experimental maximum. From the comparison 
in figure 10 it  appears that the flow in the jet assumes its similarity form very 
quickly. With the wire in a lower position, particularly for the smaller values of K ,  
the doubly peaked profile from which the jet is initially formed has been observed. 

Some of the limitations of the technique we have employed in our experimental 
investigation have been mentioned. Others include three-dimensional and finite 
amplitude effects. For the latter we note that EX$, which is assumed small in the 
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theory, was approximately 0.8 in the experiments. However within all these 
limitations (we remark that none of our equipment was purpose-built), we are 
encouraged by the consistency between the theoretical and experimental results. 

We are indebted to our physics colleagues for the loan of expensive pieces of 
apparatus which would, otherwise, have been completely unavailable. One of us 
(B. J.D.) was in receipt of an S.R.C. studentship during the period in which this 
work was carried out. 
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( h )  
FIGGKE 9. Photographs of ((I) a typicill oscilloscope tmee of the cylinder velocit,y, (6) an 

eiilargemmt ( x 4) of the visualized flow strixct#ure in t,hc jct over n circular cylinder. 
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